中华人民其和国国家标准

土壤质量 氟化物的测定离子选择电极法

Soil quality－Analysis of fluoride－Ion selective electrometry

中华人民共和国国家质量监督检验检疫总局
发布

前 言

本标准由中华人民共和国农业部提出并归口。
本标准起草单位：农业部环境保护科研监测所，广西壮族自治区农业环境监测管理站。本标准主要起草人：刘凤枝，徐亚平，战新华，蔡彦明，刘岩，刘铭。

土壤质量 氟化物的测定离子选择电极法

1 范围

本标准规定了测定土壤中氟化物的离子选择电极法。
本标准适用于离子选择电极法测定土壤中氟化物的含量。

2 原理
当氟电极与试榆浴液接触时，所产特的电极电位它溶液中氟离子活度的关系服从能斯特（Nernst）方程：

式中：
E ——测得的电极电位；
E_{0} ——参比蔍蒝的电位（固定值）；

极法测定。

3 试剂

本标准所用试剂除另変笑贯外均为分析纯试剂，所用水为去离子水或无氟蒸馏水。
$3.1(1+1)$ 盐酸溶液。
3.2 氢氧化钠（固体）：粒片状。
$3.30 .2 \mathrm{~mol} / \mathrm{L}$ 氢氧化钠溶液：称取 $0.80 \mathrm{~g}=$ 氢氨化钠与溶于水后，用水稀释至 100 mL 。
$3.40 .04 \%$ 溴甲酚紫指示剂：称取 0.10 g 溴甲酚紫，溶于 9.25 mL 氢氧化钠溶液（3．3）中，用水稀释至 250 mL 。
3.5 总离子强度缓冲溶液（TISAB）

3．5．1 $1 \mathrm{~mol} / \mathrm{L}$ 柠檬酸钠（TISAB I）：称取 294 g 柠檬酸钠（ $\mathrm{Na}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ ）于 1000 mL 烧杯中，加入约 900 mL 水溶解，用盐酸溶液（3．1）调节 pH 至 $6.0 \sim 7.0$ ，转入 1000 mL 容量瓶中，用水稀释至标线，摇匀。
3．5．2 $1 \mathrm{~mol} / \mathrm{L}$ 六次甲基四胺一 $1 \mathrm{~mol} / \mathrm{L}$ 硝酸钾一 $0.15 \mathrm{~mol} / \mathrm{L}$ 钛铁试剂（TISABII）：称取 140.2 g 六次甲基四胺 $\left[\left(\mathrm{CH}_{2}\right)_{6} \mathrm{~N}_{4}\right], ~ 101.1 \mathrm{~g}$ 硝酸钾 $\left(\mathrm{KNO}_{3}\right)$ 和 49.8 g 钛铁试剂 $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Na}_{2} \mathrm{O}_{8} \mathrm{~S}_{2} \cdot \mathrm{H}_{2} \mathrm{O}\right)$ ，加水溶解，调节 pH 至 $6.0 \sim 7.0$ ，转人 1000 mL 容量瓶中，用水稀释至标线，摇匀。
3.6 氟标准储备溶液：准确称取基准氟化钠（ $\mathrm{NaF}, ~ 105^{\circ} \mathrm{C} \sim 110^{\circ} \mathrm{C}$ 烘干 2 h ） 0.2210 g ，加水溶解后，转人 1000 mL 容量瓶中，用水稀释至标线，摇匀。贮于聚乙烯瓶中，此溶液每毫升含氟 $100 \mu \mathrm{~g}$ 。
3.7 氟标准使用溶液：用无分度吸管吸取氟标准储备溶液（3．6） 10.00 mL ，放人 100 mL 容量瓶中，用水稀释至标线，摇匀。此溶液每毫升含氟 $10.0 \mu \mathrm{~g}$ 。

4 仪器

4.1 氟离子选择电极及饱和甘汞电极。

4.2 离子活度计或 pH 计（精度 $\pm 0.1 \mathrm{mV}$ ）。
4.3 磁力搅拌器及包有聚乙烯的搅拌子。
4.4 聚乙烯烧杯： 100 mL 。
4.5 容量瓶： $50 \mathrm{~mL}, ~ 100 \mathrm{~mL}, ~ 1000 \mathrm{~mL}$ 。
4.6 镍坩埚： 50 mL 。
4.7 高温电炉：温度可调（ $0{ }^{\circ} \mathrm{C} \sim 1000{ }^{\circ} \mathrm{C}$ ）。

5 样品

将采集的土壤样品（约 500 g ），推在聚乙烯薄膜或清洁的纸上，放在通风避光的室内自然风干。风干后用木棒压碎，去除石子和动植物残体等异物，过 2 mm 尼龙筛，过筛样品全部置于聚乙烯薄膜上，充分混匀，用四分法缩分为约 100 g 。用玛瑙研钵研磨土样至全部通过 0.149 mm 尼龙筛，混匀后备用。

6 分析步骤

6.1 试液的制备

准确称取过 0.149 mm 筛的土样 0.2 g （准确至 0.0002 g ）于 50 mL 镍坩埚中，加入 2 g 氢氧化钠 （3．2），放人高温电炉中加热，由低温逐渐缓缓加热升至 $550^{\circ} \mathrm{C} \sim 570^{\circ} \mathrm{C}$ 后，继续保温 20 min 。取出冷却，用约 50 mL 煮沸的热水分几次浸取，直至熔块完全溶解，全部转入 100 mL 容量瓶中，再缓缓加入 5 mL 盐酸（3．1），不停摇动。冷却后加水至标线，摇匀。放置澄清，待测。

6.2 测定

6.2 .1 准确吸取样品溶液的上清液 10.0 mL ，放入 50 mL 容量瓶中，加 1 滴 ~ 2 滴溴甲酚紫指示剂 （3．4），边摇边逐滴加入盐酸（3．1），直至溶液由蓝紫色刚变为黄色为止。加人 15.0 mL 总离子强度缓冲溶液（3．5），用水稀释至标线，摇匀。
6．2．2 将试液倒入聚乙烯烧杯中，放入搅拌子，置于磁力搅拌器上，插入氟离子选择电极和饱和甘丞电极，测量试液的电位，在搅拌状态下，平衡 3 min ，读取电极点位值 $(\mathrm{mV}$ ）。每次测量之前，都要用水充分冲洗电极，并用滤纸吸去水分。根据测量毫伏数计算出相应的氟化物含量。

6.3 空白试验

不加样品按 6.1 制备全程序试剂空白溶液，并按步骤 6.2 进行测定。每批样品制备两个空白溶液。

6.4 标准曲线的绘制

准确吸取氟标准使用溶液（3．7）0．00，0．50，1．00，2．00，5．00，10．0，20．0 mL，分别于 50 mL 容量瓶中，加入 10.0 mL 试剂空白溶液，以下按 6.2 所述步骤，从空白溶液开始由低浓度到高浓度顺序依次进行测定。以毫伏数（ mV ）和氟含量 $(\mu \mathrm{g})$ 绘制对数标准曲线。

7 结果表示

土壤中氟含量 $c(\mathrm{mg} / \mathrm{kg})$ 按式（1）计算：

$$
\begin{equation*}
c=\frac{m-m_{0}}{w} \times \frac{V_{\text {总 }}}{V} \tag{1}
\end{equation*}
$$

式中：
m ——样品氟的含量，单位为微克 $(\mu \mathrm{g})$ ；
m_{0} ——空白氟的含量，单位为微克 $(\mu \mathrm{g})$ ；
$w —$ 称取试样质量，单位为克（ g ）；

V ——测定时吸取试样溶液体积，单位为毫升（ mL ）。

8 精密度和准确度

按照本标准测定土壤中氟化物，其相对误差的绝对值不得超过 10% 。在重复条件下，获得的两次独立测定结果的相对偏差不得超过 10%

9 注释

9.1 电极法测定的是游离氟离子，能与氟离子形成稳定络合物的高价阳离子及氢离子干扰测定。根据络合物的稳定常数及实验研究证明， Al^{3+} 的干扰最严重， $\mathrm{Zr}^{4+}, ~ \mathrm{Sc}^{3+}, ~ \mathrm{Th}^{4+}, ~ \mathrm{Ce}^{4+}$ 等次之， $\mathrm{Fe}^{3+}, ~ \mathrm{Ti}^{4+}$ ， $\mathrm{Ca}^{2+}, ~ \mathrm{Mg}^{2+}$ 等也有干扰。其他阳离子和阴离子均不干扰。
9.2 在碱性溶液中，当 OH^{-}的浓度大于 F^{-}浓度的 $1 / 10$ 时也有干抗。
9.3 加入总离子强度缓冲溶液可消除干扰，使试液的 pH 保持在 $6.0 \sim 7.0$ 时，氟电极就能在理想的范围内进行测定。

中华 人民共暞国国 家 标 准
土壤质量 氯化物的测定离子选择电极法 GB／T 22104－2008
＊
中国标准出版社出版发行北京复兴门外三里河北街16号邮政编码： 100045
网址 www．spc．net．cn
电话：68523946 68517548
中国标准出版社秦皇岛印刷厂印刷各地新华书店经销

开本 $880 \times 1230 \quad 1 / 16$ 印张 0.5 字数 6 千字 2008年8月第一版 2008年8月第一次印刷

书号：155066•1－33180 定价 10．00 元
如有印装差错 由本社发行中心调换
版权专有 侵权必究
GB／T 22104－2008
举报电话：（010） 68533533

